MRC Technical Summary Report #2249 AN ALGORITHM FOR THE ONE-PHASE STEFAN PROBLEM E. DiBenedetto and R. Spigler Mathematics Research Center University of Wisconsin-Madison 610 Walnut Street Madison, Wisconsin 53706 July 1981 (Received May 13, 1981) SEP 8 198; Λ 的地 Approved for public release Distribution unlimited Sponsor by U. S. Army Research Office P. O. Box 12211 Research Triangle Park North Carolina 27709 81 9 08 050 # UNIVERSITY OF WISCONSIN-MADISON MATHEMATICS RESEARCH CENTER #### AN ALGORITHM FOR THE ONE-PHASE STEFAN PROBLEM E. DiBenedetto (1) and R. Spigler (2) Technical Summary Report #2249 July 1981 #### ABSTRACT An algorithm is proposed for solving one-dimensional free boundary problems with change of phase. The technique consists of solving the heat equation in progressively increasing rectangles whose size is controlled by the Stefan condition. Convergence of the scheme is shown and an estimate of the rate of convergence is given. AMS (MOS) Subject Classifications: 35R35, 35K05 Key Words: Stefan problem, Approximation of the interface free boundary Work Unit Number 1 (Applied Analysis) (1) Indiana University, Bloomington, IN 47405. (2) Istituto di Matematica Applicata, Universitá di Padova, Italy NTIS GRA&I DTIC TAB Unannounced Availability Cours Availability Cours Avail and/or Dist Special Accession For Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. #### SIGNIFICANCE AND EXPLANATION Stefan type problems arise as descriptions of phenomena such as melting of metals, solidification of alloys, crystal growth, permafrost behavior. Of particular importance in such problems is the shape and evolution of the free boundary or interface. This paper suggests a method of constructing the free boundary by solving the heat equation in a sequence of increasing rectangles. The interface is then approximated by piecewise vertical segments. The simple geometry, and boundary conditions suggested, can be used to perform efficient numerical calculations. The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the authors of this report. # AN ALGORITHM FOR THE ONE-PHASE STEFAN PROBLEM E. DiBenedetto (1) and R. Spigler (2) #### 1. Introduction: Consider the following one-phase one-dimensional Stefan problem $$\text{Lu} \equiv u_{xx} - u_{t} = 0 \quad \text{in} \quad D_{T} \equiv \{0 < x < s(t)\} \times (0,T]$$ $$u(x,0) = h(x), \qquad 0 < x \leq s(0) = b, (b > 0)$$ $$u_{x}(0,t) = g(u(0,t),t), \qquad 0 < t \leq T$$ $$u(s(t),t) = 0, \qquad 0 < t \leq T$$ $$u_{x}(s(t),t) = -\dot{s}(t), \qquad 0 < t \leq T$$ where x + h(x), $(\xi,t) + g(\xi,t)$ are given functions on (0,b] and $\mathbb{R} \times (0,T]$ respectively. Under suitable assumptions on $h(\cdot)$ and g, (SP) admits a unique classical solution. For such results we refer to the survey article [13] and other papers given in the extensive bibliography. The aim of this paper is to propose an algorithm to construct the solution, which consists in solving the heat equation in progressively increasing rectangles, whose size is controlled by the Stefan condition $u_{\chi}(s(t),t) = -\dot{s}(t)$. Such an algorithm arises as a natural modification of Huber's method [15,10,1] and can be described in a simple fashion as follows. First the interval [0,T] is divided in n intervals of length $\theta=T/n$, then for te $[0,\theta]$ we set $s_{\theta}(t)=b$ and solve the problem ⁽¹⁾ Indiana University, Bloomington, IN 47405. ⁽²⁾ Istituto di Matematica Applicata, Universitá di Padova, Italy. Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. $$\begin{cases} u_{xx}^{1} - u_{t}^{1} = 0 & \text{in } R_{1} \equiv \{0 < x < b\} \times \{0, \theta\} \\ u_{x}^{1}(0,t) = g(u^{1}(0,t),t), & 0 < t \leq \theta \\ u^{1}(x,0) = h(x), & 0 < x \leq b \\ u^{1}(b,t) = 0, & 0 < t \leq \theta \end{cases}.$$ We compute the number $u_{\mathbf{x}}^{1}(\mathbf{s}_{\theta}^{(\theta)} = \mathbf{b}, \theta)$ and determine the rectangle $$R_2 = \{0 < x < x_2 = b - u_x^{(b,\theta)\theta}\} \times (\theta,2\theta)$$, setting $s_{\theta}(t) = x_2$ for $t \in \{\theta, 2\theta\}$. In R_2 we solve a problem similar to (P_1) , and proceed in this fashion. The convergence of schemes where at each time step the free boundary is approximated by a vertical segment was conjectured by Datzeff [5,6]. A proof of convergence has been given by Fasano-Primicerio-Fontanella [11]. Their scheme however is somewhat more complicated than the one we propose here, both in the construction of the sequence of rectangles and in the boundary conditions on x_j , $(j-1)\theta < t \le j\theta$ which are not homogeneous, being given as a relationship linking the distance $t-(j-1)\theta$ with the values $u_x^{j-1}(x_{j-1},(j-1)\theta)$. Thus the scheme we have described has a two-fold simplicity: the rectangular geometry and the homogeneity of the boundary data on the approximating free boundary. We treat the problem for boundary data on x = 0 of variational type since such a condition is the "natural" one, as pointed out and discussed in [7]. The method could handle the Dirichlet boundary data as well. We give an estimate of the speed of convergence which turns out to be of the order of $\sqrt{\theta}$. As a related work we mention the methods of [14] based on enthalpy considerations, which yield a slightly poorer rate of convergence, of the order of $\begin{bmatrix} \theta & t_1 & \theta^{-1} \end{bmatrix}^{1/2}$. The methods of proof are simple in that we exploit both the rectangular geometry and the homogeneity of the data to represent the approximating solutions by means of elementary heat potentials. Section 2 contains the precise description of the algorithm, assumptions and statement of results. In Sections 3 and 4 we produce basic estimates and prove the convergence of the approximating solution, to the solution of (SP). The error estimate is given in Section 5. We conclude the paper by discussing some variants of the scheme. #### 2. Assumptions and statement of results: Throughout the paper we will make the following assumptions on the data. - $[\lambda_{\frac{1}{4}}]$ x + h(x) is a positive Lipschitz continuous function on [0,b], with Lipschitz constant H, and h(b) = 0. - $[A_2]$ $(\xi,t)+g(\xi,t)$ is non-positive on $\mathbb{R}\times(0,T]$, continuous with respect to $t\in\{0,T\}$, Lipschitz continuous in ξ , uniformly in t, with Lipschitz constant G_1 and $g(h(0),0)=h^1(0)$. Moreover there exists a non-negative constant G_2 such that $$|g(\xi,t)| \le G_1|\xi| + G_2, \quad (\xi,t) \in \mathbb{R} \times (0,T]$$. For $n=1,2,\ldots,$ set $\theta=T/n$ and consider the sequence of problems P_j , $j=1,2,\ldots,n$, defined by $$\{ \begin{array}{c} Lu^{j} = 0 \quad \text{in} \quad R_{j} \equiv \{0 < x < x_{j}\} \times \{(j-1)\theta < t \leq j\theta\} \\ \\ u^{j}(x,(j-1)\theta) = \begin{cases} u^{j-1}(x,(j-1)\theta), & 0 < x \leq x_{j-1} \\ \\ 0, & x_{j-1} < x \leq x_{j} \\ \\ u^{j}_{X}(0,t) = g(u^{j}(0,t),t), & (j-1)\theta < t \leq j\theta \\ \\ u^{j}(x_{j},t) = 0, & (j-1)\theta < t \leq j\theta \end{cases}$$ where the sequence $\{x_i\}_{i=1}^n$ is recursively defined by $$x_0 = x_1 = b$$, $x_j = x_{j-1} - u_x^{j-1}(x_{j-1}, (j-1)\theta) \cdot \theta$, $j = 2,3,...,n$ and $$u^{0}(x,0) = u^{1}(x,0) \equiv h(x)$$ in $(0,b]$. By virtue of $[A_1]$ - $[A_2]$ each (P_j) admits recursively a unique classical solution u^j whose derivative u^j_X exists up to the lateral boundaries of R_j . Consequently the sequence $\{x_i\}$ is well defined. Setting $s_{\theta}(0)=b;$ $s_{\theta}(t)=x_{j}$ for $(j-1)\theta < t \le j\theta$, j=1,2,...,n, we obtain a right-continuous, piecewise constant function defined in $\{0,T\}$. By elementary considerations and the maximum principle $\{7,8\}$ $u^{j}(x,t) \ge 0$ and the numbers $u_{x}^{j}(x_{j},j^{\theta})$ are non-positive so that $x_{j+1} > x_{j}$ and $s_{\theta}(^{\circ})$ is non-decreasing. On the domain $$v_{s_{\theta}} = \bigcup_{j=1}^{n} R_{j}$$, we define the function $(x,t)+u_{\theta}(x,t)$, $(x,t)\in \mathbb{D}_{+}$, by setting $u_{\theta}(x,t)=u^{j}(x,t),\; (x,t)\in R_{j},\quad j=1,2,\ldots,n\;.$ We will think of $u(\cdot,\cdot)$ the solution of (SP) and u_{θ} as defined in the whole half strip $S \equiv (0,\infty) \times (0,T]$, by setting them to be equal to zero outside D_T and $\mathcal{D}_{S_{\theta}}$ respectively. We will use this device for the various functions appearing in what follows without specific mention. For bounded functions $(x,t) \Rightarrow w(x,t)$, $t \Rightarrow f(t)$ defined in S and (0,t] respectively we set $$|w|_{\infty,S} = \sup_{\{x,t\} \in S} |w(x,t)|$$ $$|f|_{t} = \sup_{0 < \tau \le t} |f(\tau)|.$$ We can now state our main result. Theorem: As $\theta + 0$, $u_{\theta}(x,t) + u(x,t)$ uniformly in S and $s_{\theta}(t) + s(t)$ uniformly in [0,T]. Moreover there exists a constant C depending upon H, b, G_1 , G_2 , T such that $$|\mathbf{u}_{\theta} - \mathbf{u}|_{\infty, S} < c/\theta$$ $$|\mathbf{s}_{\theta} - \mathbf{s}|_{T} < c/\theta .$$ Remark: (i) In view of the stability of (SP) (see [2,3]) the Lipschitz condition in $[A_1]$ can be replaced by $[A_4]$ ' x + h(x) is essentially bounded in [0,b]. (ii) The signum condition on g in $\{A_2\}$ can be dropped, provided we assume g(0,t)=0, $t\in \{0,T\}$. In this case we set $G_2=0$ in the growth condition for g. #### 3. Some basic estimates: Let $$\Gamma(x,t;\xi,\tau) = \frac{1}{2\sqrt{\pi(t-\tau)}} \exp\left[-\frac{(x-\xi)^2}{4(t-\tau)}\right]$$ be the fundamental solution of the heat equation and let $G(x,t;\xi,\tau)$, $N(x,t;\xi,\tau)$ be the Green's and Neumann's functions respectively, defined by $$G(x,t;\xi,\tau) = \Gamma(x,t;\xi,\tau) - \Gamma(-x,t;\xi,\tau) ,$$ $$N(x,t;\xi,\tau) = \Gamma(x,t;\xi,\tau) + \Gamma(-x,t;\xi,\tau) .$$ In the jth rectangle R_j the solution u^j of (P_j) can be implicitly represented as (3.1) $$u^{j}(x,t) = \int_{0}^{x_{j}} N(x,t;\xi,(j-1)\theta)u^{j}(\xi,(j-1)\theta)d\xi - \int_{(j-1)\theta}^{t} N(x,t;0,\tau)g(u^{j}(0,\tau),\tau)d\tau + \int_{(j-1)\theta}^{t} N(x,t;x_{j},\tau)u^{j}_{x}(x_{j},\tau)d\tau$$ for $(x,t) \in R_j$. Taking the derivative with respect to x in (3.1) and letting $x + x_j$ we obtain $$(3.2) \qquad \frac{1}{2} u_{\mathbf{x}}^{\mathbf{j}}(\mathbf{x}_{\mathbf{j}}, \mathbf{t}) = \int_{0}^{\mathbf{x}_{\mathbf{j}}} G(\mathbf{x}_{\mathbf{j}}, \mathbf{t}; \boldsymbol{\xi}, (\mathbf{j} - 1)\theta) u_{\mathbf{x}}^{\mathbf{j}}(\boldsymbol{\xi}, (\mathbf{j} - 1)\theta)) d\boldsymbol{\xi} - \\ - \int_{(\mathbf{j} - 1)\theta}^{\mathbf{t}} N_{\mathbf{x}}(\mathbf{x}_{\mathbf{j}}, \mathbf{t}; \mathbf{0}, \tau) g(u^{\mathbf{j}}(\mathbf{0}, \tau), \tau) d\tau + \\ + \int_{(\mathbf{j} - 1)\theta}^{\mathbf{t}} N_{\mathbf{x}}(\mathbf{x}_{\mathbf{j}}, \mathbf{t}; \mathbf{x}_{\mathbf{j}}, \tau) u_{\mathbf{x}}^{\mathbf{j}}(\mathbf{x}_{\mathbf{j}}, \tau) d\tau, \qquad (\mathbf{j} - 1)\theta < \mathbf{t} \leq \mathbf{j}\theta .$$ The calculations leading to (3.1)-(3.2) are routine and we refer to [4,9,12] for details. Let us fix 1 < j < n and (x,t) e R_j and integrate the Green identity $\frac{\partial}{\partial \xi} \left(Nu_{\xi} - uN_{\xi} \right) = \frac{\partial}{\partial \tau} \left(Nu \right) = 0$ over R_k , 1 \leq k \leq j. Since in R_k we are away from the singularity we obtain (3.3) $$\int_{0}^{x_{k}} N(x,t;\xi,k\theta) u^{k}(\xi,k\theta) d\xi = \int_{0}^{x_{k}} N(x,t;\xi,(k-1)\theta) u^{k}(\xi,(k-1)\theta) d\xi$$ $$= -\int_{(k-1)\theta}^{k\theta} N(x,t;0,\tau) g(u_{\theta}(0,\tau),\tau) d\tau + \int_{(k-1)\theta}^{k\theta} N(x,t;x_{k},\tau) u_{x}^{k}(x_{k},\tau) d\tau$$ for k = 1, 2, ..., (j - 1). By virtue of our definition of (P_j) , the second integral on the left hand side of (3.3) can be rewritten as $$-\int_{0}^{x_{k-1}} N(x,t;\xi,(k-1)\theta)u^{k-1}(\xi,(k-1)\theta)d\xi.$$ Consequently adding the identities (3.3) for k = 1, 2, ..., (j - 1) with (3.1) and recalling the definition of $u_0(x,t)$ we obtain $$u_{\theta}(x,t) = \int_{0}^{b} N(x,t;\xi,0)h(\xi)d\xi - \int_{0}^{t} N(x,t;0,\tau)g(u_{\theta}(0,\tau),\tau)d\tau$$ $$+ \sum_{k=1}^{j-1} \int_{(k-1)\theta}^{k\theta} N(x,t;x_{k},\tau)u_{x}^{k}(x_{k},\tau)d\tau +$$ $$+ \int_{(j-1)\theta}^{t} N(x,t;x_{j},\tau)u_{x}^{j}(x_{j},\tau)d\tau .$$ Lemma 3.1: For each θ the following estimates are valid $$\mathbf{u}_{\theta}\mathbf{I}_{\mathbf{w},s} \leq \mathbf{c}_{0}.$$ <u>Proof:</u> By virtue of the maximum principle $u_{\theta} > 0$ in \mathcal{D}_{θ} and $u_{\mathbf{x}}^{\mathbf{j}}(\mathbf{x}_{\mathbf{j}}, t) \leq 0$, $t \in ((\mathbf{j} - 1)\theta, \mathbf{j}\theta)$, therefore dropping the non-positive terms on the right hand side of (3.4) and letting $\mathbf{x} > 0$ we obtain $$0 \le u_{\theta}(0,t) \le \int_{0}^{b} 2\Gamma(0,t,\xi,0)h(\xi) d\xi - \frac{1}{\sqrt{\pi}} \int_{0}^{t} \frac{g(u_{\theta}(0,\tau),\tau)}{\sqrt{t-\tau}} d\tau$$ $$\le \frac{Hb}{\sqrt{\pi}} \int_{0}^{b} \frac{1}{\sqrt{t}} \exp[-\xi^{2}/4t] d\xi + \frac{G_{1}}{\sqrt{\pi}} \int_{0}^{t} \frac{u_{\theta}(0,\tau)}{\sqrt{t-\tau}} d\tau + \frac{2G_{2}}{\sqrt{\pi}} \sqrt{\tau}.$$ Statement (a) is now a consequence of standard calculations and Gronwall's inequality. Statement (b) follows from the maximum principle applied recursively to (P_j) . Lemma 3.2: For each j = 1, 2, ..., n (a) $$|u_X^j(x_1,t)| \le \tilde{H}e^{\frac{T}{L}} + 8G\tilde{T}e^{\frac{T}{L}} \equiv C_1, \quad \tilde{T} = T/\sqrt{\pi}b^2$$ (b) $$\left|\frac{\partial}{\partial x} u_{\theta}(x,t)\right| \leq c_1, \quad (x,t) \in \mathcal{D}_{s_{\theta}},$$ where $G = G_1C_0 + G_2$, and $H = \max\{H,G\}$. <u>Proof:</u> We employ an induction argument by making use of formulae (3.2). First we prove that if for some j = 1, 2, ..., (n - 1) we have $$|u_{\mathbf{x}}^{\mathbf{j}}(\mathbf{x},\mathbf{j}\theta)| \leq \mathbf{P}, \qquad 0 < \mathbf{x} < \mathbf{x}_{\mathbf{j}}$$ for some positive constant P, then (3.5) $$|u_x^{j+1}(x_{j+1},t)| \le Pe^{\theta/\sqrt{\pi}b^2} + 8G \frac{\theta}{\sqrt{\pi}b^2} e^{\theta/\sqrt{\pi}b^2}, te(j\theta,(j+1)\theta)$$ where $$\max_{\{g(u_{\theta}(0,t),t)\}} \{g_{1}c_{0} + g_{2} \equiv g.$$ Consider (3.2) written for the integer j + 1 (3.6) $$\frac{1}{2} u_x^{j+1}(x_{j+1},t) = I_1 + I_2 + I_3$$ and estimate the integrals I_i , i = 1,2,3 separately as follows. $$|I_{1}| = |\int_{0}^{x_{j+1}} G(x_{j+1}, t; \xi, j\theta) u_{x}^{j+1}(\xi, j\theta) d\xi| = \text{by definition of } (P_{j})$$ $$= |\int_{0}^{x_{j}} G(x_{j+1}, t; \xi, j\theta) u_{x}^{j}(\xi, j\theta) d\xi| \leq P \int_{0}^{x_{j}} |G(x_{j+1}, t; \xi, j\theta)| d\xi$$ $$\leq \frac{P}{\sqrt{\pi}} \int_{0}^{\infty} e^{-\eta^{2}} d\eta = \frac{P}{2}.$$ To estimate I_2 , I_3 we recall the following elementary estimates on N_{χ} $$|N_{x}(x_{j+1},t;0,\tau)| \le \frac{4}{\sqrt{\pi}b^{2}}, \qquad (x_{j+1} \ge b > 0)$$ $$|N_{x}(x_{j+1},t;x_{j+1},\tau)| \le \frac{1}{2\sqrt{\pi}b^{2}}.$$ Therefore $$|I_2| \le \frac{4G}{\sqrt{\pi}b^2} (t - j\theta) \le 4G \frac{\theta}{\sqrt{\pi}b^2}$$, $|I_3| \le \frac{1}{2\sqrt{\pi}b^2} \int_{j\theta}^{t} |u_x^{j+1}(x_{j+1}, \tau)| d\tau$. Putting together these estimates as parts of (3.6) we have $$|u_{x}^{j+1}(x_{j+1},t)| \le P + 8G \frac{\theta}{\sqrt{\pi}b^{2}} + \frac{1}{\sqrt{\pi}b^{2}} \int_{j\theta}^{t} |u_{x}^{j+1}(x_{j+1},\tau)|d\tau$$ for all te $(j\theta,(j+1)\theta)$. Consequently by Gronwall's inequality (3.5) follows at once. Consider now the problem (P_j) j=1. Since x+h(x) is Lipschitz continuous in [0,b], h'(x) exists for a.e. $x \in [0,b]$ and ess sup $$|h'(x)| \le H \le \widetilde{H} = \max \{H,G\}$$. [0,b] Therefore by the previous argument $$|u_{x}^{1}(x_{1},t)| \le \widetilde{He}^{\alpha} + 8G\alpha e^{\alpha}, \quad t \in (0,\theta]$$ where for simplicity of notation we have set $\alpha \approx \theta/\sqrt{\pi}b^2$. The function $(x,t) + u_x^1(x,t) \equiv v(x,t)$, will satisfy the Dirichlet problem Lw = 0 in $$R_1$$ $$v(0,t) = g(u_{\theta}(0,t),t);$$ $|g(u_{\theta}(0,t),t)| \le G,$ $t \in \{0,\theta\}$ $|v(x_{\eta},t)| \le \widetilde{He}^{\alpha} + 8G\alpha e^{\alpha},$ $t \in \{0,\theta\}$ $$v(x,0) = h^{1}(x), [h^{1}(x)] \le H$$ a.e. $x \in (0,b]$. Consequently by the maximum principle $$|\mathbf{u}_{\mathbf{v}}^{1}(\mathbf{x}, \theta)| \leq \widetilde{\mathbf{He}}^{\alpha} + \mathbf{BGae}^{\alpha}$$ and by (3.5) $$|u_x^2(x_2,t)| \le \tilde{H}e^{2\alpha} + 8G\alpha e^{2\alpha} + 8G\alpha e^{\alpha}$$ $\le \tilde{H}e^{2\alpha} + 8G(2\alpha)e^{2\alpha}, \quad t(\theta,2\theta).$ Proceeding in this fashion we obtain $$|u_{\mathbf{x}}^{\mathbf{j}}(\mathbf{x}_{\mathbf{j}},t)| \leq \tilde{H}e^{\mathbf{j}\alpha} + 8G(\mathbf{j}\alpha)e^{\mathbf{j}\alpha}$$. Now $j\alpha=\frac{1}{\sqrt{\pi}b^2}$ $j\theta \leq \bar{T}$, and therefore the lemma is proved. Next we introduce the function $t+\bar{s}_{\theta}(t)$ defined by (3.7) $$\bar{s}_{\theta}(t) - x_{j} - u_{x}^{j}(x_{j}, j\theta)(t - (j - 1)\theta), \quad t \in ((j - 1)\theta, j\theta)$$. For $t=j\theta$, $\tilde{s}_{\theta}(t)=x_{j+1}$, $\tilde{s}_{\theta}(0)$ b, so that the graph of $\tilde{s}_{\theta}(\cdot)$ is obtained by connecting the points $(b,0),(x_2,\theta),...,(x_n,(n-1)\theta)$ for $t\in(0,(n-1)\theta]$, and by the graph of (3.7) for $t\in[(n-1)\theta,T]$. The points $(x_j,(j-1)\theta), j=1,2,...,n$, are the lower vertices at the right side of the R_4 's. By Lemma 3.2 $$b \le \bar{s}_{\theta}(t) \le b + c_1 T$$, te [0,T] therefore the sequence $\{\tilde{s}_{\theta}(\cdot)\}$ is equibounded and equilipschitz, so that by Ascoli-Arzela theorem a subsequence relabeled with θ , converges uniformly to some non-decreasing, Lipschitz continuous curve $t + s^*(t)$, with Lipschitz constant bounded by C_1 . Since $\|s_{\theta} - \tilde{s}_{\theta}\|_{T} \leq C_1\theta$, also $s_{\theta}(t)$ converges uniformly to $s^*(t)$. Let D_{g*} be the domain defined by $$D_{a*} \equiv \{0 < x < s*(t)\} \times (0,T]$$, and let u* be the unique solution of $$\begin{cases} Lu^* = 0 & \text{in } D_{S^*}, \\ u^*_X(0,t) = g(u^*(0,t),t), & t \in (0,T], \\ u^*(x,0) = h(x), & x \in (0,b], \\ u^*(s(t),t) = 0, & t \in [0,T]. \end{cases}$$ We will show that $u_g(x,t) + u^*(x,t)$ uniformly in S and that the pair (u^*,s^*) so obtained is actually the unique solution of (SP) in the introduction. We remark that as a consequence, in view of the uniqueness for (SP), the selection of subsequences is superfluous. The following lemma will be needed. Lemma 3.3: Let (x,t) + v(x,t) be the unique solution of $$Lv = 0 \text{ in } D_{g^*},$$ $$v_{X}(0,t) = g(u_{\theta}(0,t),t), \qquad t \in (0,T],$$ $$v(x,0) = h(x), \qquad x \in (0,b],$$ $$v(s^*(t),t) = 0, \qquad t \in (0,T].$$ Then $$0 \le v(x,t) \le C_1(s^*(t) - x), \quad (x,t) \in D_{s^*}$$. Proof: The lemma is proved by standard barrier techniques and the maximum principle . [10]. ``` 4. Convergence of the scheme: ``` Lemma 4.1: $u_{\theta}(x,t) + u^{*}(x,t)$ uniformly in S, as $\theta + 0$. Proof: By the triangle inequality where $w_1(x,t) = u_0(x,t) - v(x,t)$ and $w_2(x,t) = v(x,t) - u^*(x,t)$, and v is defined in Lemma 3.3. Set $$\alpha(t) = \min\{s_{\theta}(t), s^{*}(t)\}, \ \beta(t) = \max\{s_{\theta}(t), s^{*}(t)\},$$ $$\delta(t) = \beta(t) - \alpha(t), \qquad t \in [0,T].$$ We already know that $\delta(t) + 0$ uniformly in $\{0,T\}$, as $\theta + 0$. Consider the rectangle R_{ij} , 1 \leq j \leq n. We claim that if $$|w_1(x,(j-1)\theta)| \le c_1 \|\delta\|_{(j-1)\theta}$$, $x \in (0,\infty)$, then $$|w_{1}(x,t)| \le c_{1} \|\delta\|_{t}$$, $(x,t) \in (0,\infty) \times ((j-1)\theta, j\theta]$. If for te[(j - 1)0,j0], $x_j \le s^*(t)$ then w_1 solves the problem $$Iw_{1} = 0$$ in $\{0 < x < x_{j}\} \times ((j - 1)\theta, j\theta\}$, $$w_{1_{X}}^{(0,t)} = 0,$$ te ((j - 1)0,j0], $$|w_1(x,(j-1)\theta)| \le c_1^{||\delta||} (j-1)\theta', \quad x \in (0,x_j],$$ $$w_1(x_j,t) = -v(x_j,t),$$ te((j-1)0,j0]. Hence $\{w_1(x,t)\} \le \max\{c_1\|\delta\|_{(j-1)\theta}, \max_{\{(j-1)\theta,j\theta\}} v(x_j,t)\}, (x,t) \in R_j$. By Lemma 3.3 we obtain $$|w_1(x,t)| \le c_1 \|\delta\|_+$$, $(x,t) \in [0,\infty) \times [(j-1)\theta, j\theta]$. If for te[(j - 1)0,j0], $x_{ij} > s*(t)$, then w_{ij} solves the problem $$Lw_1 = 0$$ in $\{0 < x < s^*(t)\} \times ((j-1)\theta, j\theta]$, $$w_{1x}(0,t) = 0,$$ te $\{(j-1)\theta, j\theta\}$, $$|w_1(x,(j-1)\theta)| \le c_1^{\|\delta\|}_{(j-1)\theta}, \quad 0 < x \le s^*[(j-1)\theta],$$ $$w_{1}(s^{*}(t),t) = u_{\theta}(s^{*}(t),t), t \in ((j-1)\theta,j\theta]$$. By Lemma 3.2 we have $0 \le u_{\theta}(x,t) \le C_{1}(x_{j}-x)$, $(x,t) \in R_{j}$ and therefore $$|w_1(x,t)| \le C_1 \|\delta\|_{L^2}$$, $(x,t) \in (0,\infty) \times ((j-1)\theta,j\theta]$. If $t^* \in ((j-1)\theta, j\theta)$ such that $x_j = s^*(t^*)$, then we repeat analogous arguments in the domains so determined. Now since for t=0, $w_1(x,0)=0$, $x\in(0,\infty)$, an inductive argument gives $|w_1(x,t)|\leq C_1^{\|\delta\|}_t,\quad x\in(0,\infty),\quad t\in[0,T]\ .$ As for w_2 , since it solves the problem $$Iw_2 = 0 \text{ in } D_{g*},$$ $$w_{2x}(0,t) = g(u_{\theta}(0,t),t) - g(u^*(0,t),t),$$ $$w_{2}(x,0) = 0, \quad x \in (0,b]$$ $$w_{2}(s^*(t),t) = 0, \quad t \in (0,T]$$ it can be dominated [2,3] by the function $$\tilde{w}_{2}(x,t) = \int_{0}^{t} N(x,t;0,\tau) |g(u_{\theta}(0,\tau),\tau) - g(u^{*}(0,\tau),\tau)| d\tau$$ the unique solution of $$I\widetilde{w}_{2} = 0 \text{ in } S,$$ $$\widetilde{w}_{2x}(0,t) = -|g(u_{\theta}(0,t),t) - g(u^{*}(0,t),t)|, \quad t \in (0,T],$$ $$\widetilde{w}_{2}(x,0) = 0, \quad x \in (0,\infty).$$ Hence $$|w_2(x,t)| \le G_1 \int_0^t N(x,t,0,\tau) |u_{\theta}(0,\tau) - u^*(0,\tau)| d\tau$$. We deduce that $$|u_{\theta}(x,t) - u^{*}(x,t)| \le |w_{1}(x,t)| + G_{1} \frac{1}{\sqrt{\pi}} \int_{0}^{t} \frac{|u_{\theta}(0,\tau) - u^{*}(0,\tau)|}{\sqrt{t-\tau}} d\tau$$ $$\leq c_1 \|\delta\|_{t} + \frac{G_1}{\sqrt{\pi}} \int_{0}^{t} \frac{\sup_{x \in [0, \infty)} |u_{\theta}(x, \tau) - u(x, \tau)|}{\sqrt{t - \tau}} d\tau$$ And by Gronwall's inequality (4.1) $$\sup_{\mathbf{x} \in \{0, \infty\}} |u_{\theta}(\mathbf{x}, t) - u(\mathbf{x}, t)| \le c_1 \|\delta\|_{t^{\theta}} = c_2 \|\delta\|_{t}$$ for all te [0,T]. The lemma is proved. Lemma 4.2: The pair (u*,s*) coincides with the unique solution of (SP). Proof: The only thing that remains to be proved is the Stefan condition u(s(t),t) = -s(t), $t \in (0,T]$. Such a condition has been shown to be equivalent to the integral identity [2, page 85] (4.2) $$s(t) = b - \int_{0}^{t} g(u(0,\tau),\tau) d\tau + \int_{0}^{b} h(x) dx - \int_{0}^{s(t)} u(x,t) dx,$$ and hence it will be sufficient to prove that s^* , u^* , satisfy (4.2). Integrating the equation $Lu^{j} = 0$ over R_{ij} we obtain $$-\int_{(j-1)\theta}^{j\theta} u_{x}^{j}(x_{j},\tau)d\tau = -\int_{(j-1)\theta}^{j\theta} g(u^{j}(0,\tau),\tau)d\tau +$$ $$+\int_{0}^{x_{j}} u^{j}(x_{j}(t-1)\theta)dx - \int_{0}^{x_{j}} u^{j}(x_{j}(t-1)\theta)dx = 0$$ (4.3) Also for $(x,t) \in \mathbb{R}_p$, $1 \le p \le n$, integrate $\mathbb{L}u^p = 0$ over the rectangle $\{0 < x < x_p\} \times ((p-1)\theta,t)$. It gives $$(4.4) - \int_{(p-1)\theta}^{t} u_{x}^{p}(x_{p}, \tau) d\tau = -\int_{(p-1)\theta}^{t} g(u^{p}(0, \tau), \tau) d\tau + \int_{0}^{x_{p}} u^{p}(x_{r}(p-1)\theta) dx$$ $$- \int_{0}^{x_{p}} u^{p}(x_{r}, t) dx .$$ By the definition of (P_4) we have $$\int_{0}^{x_{j+1}} u^{j+1}(x,j\theta) dx = \int_{0}^{x_{j}} u^{j}(x,j\theta) dx ,$$ therefore adding the identities (4.3) for j = 1, 2, ..., p - 1 and (4.4) we obtain $$-\sum_{j=1}^{p-1} \int_{(j-1)\theta}^{j\theta} u_{x}^{j}(x_{j},\tau) d\tau - \int_{(p-1)\theta}^{t} u_{x}^{p}(x_{p},\tau) d\tau =$$ $$= -\int_{0}^{t} g(u_{\theta}(0,\tau),\tau) d\tau + \int_{0}^{b} h(x) dx - \int_{0}^{x} u^{p}(x,t) dx .$$ We rewrite the left hand side of (4.5) as follows: $$\begin{split} & - \sum_{j=1}^{p-1} \int_{(j-1)\theta}^{j\theta} u_x^j(x_j,\tau) d\tau - \int_{(p-1)\theta}^t u_x^p(x_p,\tau) d\tau = - \sum_{j=1}^{p-1} \int_{(j-1)\theta}^{j\theta} u_x^j(x_j,j\theta) d\tau - \\ & - \int_{(p-1)\theta}^t u_x^p(x_p,p\theta) d\tau - \sum_{j=1}^{p-1} \int_{(j-1)\theta}^{j\theta} e_{\theta}^j(\tau) d\tau - \int_{(p-1)\theta}^t e_{\theta}^p(\tau) d\tau \,, \end{split}$$ where $$e_{\theta}^{i}(t) = u_{x}^{i}(x_{i},t) - u_{x}^{i}(x_{i},i\theta), \quad (i-1)\theta < t \le i\theta, \quad i = 1,2,...,n$$ We observe that the numbers $-u_{\mathbf{x}}^{\mathbf{j}}(\mathbf{x}_{\mathbf{j}},\mathbf{j}\theta)$ are the slopes of the Lipschitz continuous polygonal $\mathbf{t} + \tilde{\mathbf{s}}_{\theta}(\mathbf{t})$ for $(\mathbf{j} - \mathbf{1})\theta < \mathbf{t} \leq \mathbf{j}\theta$, consequently $$-\sum_{j=1}^{p-1}\int_{(j-1)\theta}^{j\theta}u_{\mathbf{x}}^{\mathbf{j}}(\mathbf{x}_{\mathbf{j}},j\theta)d\tau - \int_{(p-1)\theta}^{t}u_{\mathbf{x}}^{\mathbf{p}}(\mathbf{x}_{\mathbf{p}},p\theta)d\tau = \int_{0}^{t}\frac{d}{d\tau}\,\bar{\mathbf{s}}_{\theta}(\tau)d\tau = \bar{\mathbf{s}}_{\theta}(t) - b.$$ Carrying this in (4.5) gives (4.6) $$\overline{s}_{\theta}(t) = b - \int_{0}^{t} g(u_{\theta}(0,\tau),\tau) d\tau + \int_{0}^{b} h(x) dx - \int_{0}^{x} u_{\theta}(x,t) dx + \int_{0}^{p-1} \int_{j=1}^{j\theta} \int_{(j-1)\theta}^{j} e_{\theta}^{j}(\tau) d\tau + \int_{(p-1)\theta}^{t} e_{\theta}^{p}(\tau) d\tau .$$ By virtue of Lemma 4.1 and the uniform convergence $\vec{s}_{\theta}(t) + s^*(t)$, letting $\theta + 0$ in (4.6) gives Therefore the lemma will be proved if we show that the limit in (4.7) is zero. In order to estimate the $e_{\theta}^{j}(\cdot)$ we will need a representation for $u_{x}^{j}(x_{j},t)$, te $((j-1)\theta,j\theta)$. Consider identity (3.3). By taking the derivative with respect to \times and integrating by parts the first two integrals (the identity $N_X = -G_\xi$ is used) we obtain $$\begin{aligned} (4.8) & \int_{0}^{x_{k}} G(x,t;\xi,k\theta) u_{x}^{k}(\xi,k\theta) d\xi & - \int_{0}^{x_{k}} G(x,t;\xi,(k-1)\theta) u_{x}^{k}(\xi,(k-1)\theta) d\xi \\ & = - \int_{(k-1)\theta}^{k\theta} N_{x}(x,t;0,\tau) g(u_{\theta}(0,\tau),\tau) d\tau + \int_{(k-1)\theta}^{k\theta} N_{x}(x,t;x_{k},\tau) u_{x}^{k}(x_{k},\tau) d\tau \end{aligned} .$$ Now by the construction of u^k , the second integral in (4.8) can be rewritten as $$-\int_{0}^{x_{k-1}} G(x,t;\xi,(k-1)\theta) u_{x}^{k-1}(\xi,(k-1)\theta) d\xi ,$$ therefore adding the identities in (4.8) for k = 1, 2, ..., (j - 1), changing the sign and evaluating the sum at $x = x_4$, gives $$(4.9) \qquad \int_{0}^{b} G(x_{j}, t; \xi, 0) h^{\tau}(\xi) d\xi - \int_{0}^{x_{j}-1} G(x_{j}, t; \xi, (j-1)\theta) u_{x}^{j-1}(\xi, (j-1)\theta) d\xi$$ $$= \int_{0}^{(j-1)\theta} N_{x}(x_{j}, t; 0, \tau) g(u_{\theta}(0, \tau), \tau) d\tau -$$ $$- \frac{j-1}{k-1} \int_{k-1}^{k\theta} N_{x}(x_{j}, t; x_{k}, \tau) u_{x}^{k}(x_{k}, \tau) d\tau .$$ Consider now the representation (3.2). By the way $u^{\frac{1}{2}}$ has been constructed, the first integral on the right hand side of (3.2) reads $$\int_{0}^{x_{j-1}} G(x_{j}, t; \xi, (j-1)\theta) u_{x}^{j-1} (\xi, (j-1)\theta) d\xi.$$ Finally adding (3.2) and (4.9) gives $$\frac{1}{2} u_{x}^{j}(x_{j},t) = \int_{0}^{b} G(x_{j},t;\xi,0)h^{*}(\xi)d\xi - \int_{0}^{t} N_{x}(x_{j},t;0,\tau)g(u_{\theta}(0,\tau),\tau)d\tau +$$ $$+ \sum_{k=1}^{j-1} \int_{(k-1)\theta}^{k\theta} N_{x}(x_{j},t;x_{k},\tau)u_{x}^{k}(x_{k},\tau)d\tau +$$ $$+ \int_{(j-1)\theta}^{t} N_{x}(x_{j},t;x_{j},\tau)u_{x}^{j}(x_{j},\tau)d\tau, \quad t \in ((j-1)\theta,j\theta].$$ The error terms $e_{\theta}^{j}(t)$ j = 2,3,...,(p-1), can now be written as $$\frac{1}{2} e_{\theta}^{j}(t) = \frac{1}{2} \left[u_{x}^{j}(x_{j},t) - u_{x}^{j}(x_{j},j\theta) \right] = \int_{0}^{b} \left[G(x_{j},t;\xi,0) - G(x_{j},j\theta;\xi,0) \right] h'(\xi) d\xi - \int_{0}^{t} \left[N_{x}(x_{j},t;0,\tau) - N_{x}(x_{j},j\theta;0,\tau) \right] g(u_{\theta}(0,\tau),\tau) d\tau + \int_{t}^{j\theta} N_{x}(x_{j},j\theta;0,\tau) g(u_{\theta}(0,\tau),\tau) d\tau + \int_{k=1}^{j-1} \int_{(k-1)\theta}^{k\theta} \left[N_{x}(x_{j},t;x_{k},\tau) - N_{x}(x_{j},j\theta;x_{k},\tau) \right] u_{x}^{k}(x_{k},\tau) d\tau + \int_{(j-1)\theta}^{t} \left[N_{x}(x_{j},t;x_{j},\tau) - N_{x}(x_{j},j\theta;x_{j},\tau) \right] u_{x}^{j}(x_{j},\tau) d\tau - \int_{t}^{j\theta} N_{x}(x_{j},j\theta;x_{j},\tau) u_{x}^{j}(x_{j},\tau) d\tau =$$ $$= J_{1} + J_{2} + J_{2}^{j} + J_{3} + J_{4} + J_{4}^{j} .$$ By the mean value theorem and standard estimates on the exponential function we have $$|G(\kappa_{j},t;\xi,0)-G(\kappa_{j},j\theta;\xi,0)| \leq (\kappa_{1}+\frac{\kappa_{2}}{t^{3/2}})\theta \leq \kappa_{1}\theta + \kappa_{2}(j-1)^{-3/2}\theta^{-1/2} \ .$$ Here and in what follows K_{σ} denote constants independent of j. Consequently $|J_1| \le \text{Hb}(K_1^{-\theta} + K_2^{-(j-1)})^{-3/2}\theta^{-1/2}) \ .$ As for J_2 analogous arguments yield the estimate $$|N_{x}(x_{1},t;0,\tau) - N_{x}(x_{1},j\theta;0,\tau)| \le K_{3}\theta$$, where we have used the fact that $x_j > b > 0$. Therefore J_2 can be estimated by $|J_2| \le GK_2T\theta$. Let us now turn to J_3 . First we note that for k = 1, 2, ..., (j - 2), $$|\mathbf{N}_{\mathbf{x}}(\mathbf{x}_{\mathbf{j}},\mathbf{t}_{\mathbf{j}}\mathbf{x}_{\mathbf{k}},\tau) - \mathbf{N}_{\mathbf{x}}(\mathbf{x}_{\mathbf{j}},\mathbf{j}\theta_{\mathbf{j}}\mathbf{x}_{\mathbf{k}},\tau)| \leq (\mathbf{j}\theta - \mathbf{t}) \sup_{\mathbf{t} \leq \rho \leq \mathbf{j}\theta} |\mathbf{N}_{\mathbf{x}\mathbf{t}}(\mathbf{x}_{\mathbf{j}},\rho_{\mathbf{j}}\mathbf{x}_{\mathbf{k}},\tau)| \leq$$ $$< \kappa_4 \theta + \kappa_5 \theta \sup_{t < \rho < j \theta} \frac{x_j - x_k}{(\rho - \tau)^{5/2}} e^{-\frac{(x_j - x_k)^2}{4(\rho - \tau)}}.$$ Now since $(x_k, k\theta)$, $(x_j, (j-1)\theta)$ belong to the maximal extension of the graph $(t, s_{\theta}(t))$, we have $(x_j - x_k) \le 2C_1(\rho - \tau)$, for k = 1, 2, ..., (j-2), and hence $$\begin{aligned} |J_3| &\leq \sum_{k=1}^{j-2} \int_{(k-1)\theta}^{k\theta} |N_x(x_j, t_j x_k, \tau) - N_x(x_j, j\theta_j x_k, \tau)| \{u_x^k(x_k, \tau) | d\tau + \\ &+ \int_{(j-2)\theta}^{(j-1)\theta} |N_x(x_j, t_j x_{j-1}, \tau) - N_x(x_j, j\theta_j x_{j-1}, \tau)| \|u_x^{j-1}(x_{j-1}, \tau)| d\tau \\ &\leq c_1 \kappa_4 \theta \int_0^{(j-2)\theta} d\tau + 2c_1^2 \kappa_5 \theta \int_0^{(j-2)\theta} [(j-1)\theta - \tau]^{-3/2} d\tau + \end{aligned}$$ + $$c_1 \int_{(j-2)\theta}^{(j-1)\theta} |N_x(x_j,t_ix_{j-1},t) - N_x(x_j,j\theta,x_{j-1},t)|dt$$. In order to estimate the last integral recall that $$|N_{\mathbf{x}}(\mathbf{x}_{j}, \rho_{i}\mathbf{x}_{j-1}, \tau)| \le \kappa_{6}(\rho - \tau)^{-1/2}, \quad \rho > \tau$$. Substituting this in the estimate of J_3 we obtain after some algebra Analogous considerations yield $|J_2^i| + |J_4| + |J_4^i| \le K_8^{\sqrt{\theta}}$. Therefore the error terms $e_{\theta}^j(t)$ can be estimated by $$|e_{\theta}^{j}(t)| \le \kappa_{g}\sqrt{\theta} + \kappa_{10}(j-1)^{-3/2}\theta^{-1/2}$$. For the error R_{θ} in (4.6) we have $$|E_{\theta}| \le \sum_{j=1}^{p-1} \int_{(j-1)\theta}^{j\theta} |e_{\theta}^{j}(\tau)| d\tau + \int_{(p-1)\theta}^{t} |e_{\theta}^{p}(\tau)| d\tau \le 0$$ $$\leq \int_{0}^{\theta} |e_{\theta}^{1}(\tau)| d\tau + \sum_{j=2}^{p} \int_{(j-1)\theta}^{j\theta} |e_{\theta}^{j}(\tau)| d\tau.$$ Now trivially $|e_{\theta}^{1}(\tau)| \le 2C_{1}$. Therefore $$|\mathbf{E}_{\theta}| \le 2c_1^{\theta} + \kappa_9^{\sqrt{\theta}} \sum_{j=2}^{p} \theta + \kappa_{10}^{\sqrt{\theta}} \sum_{j=2}^{p} (j-1)^{-3/2}$$. Since $\sum_{j=2}^{p} \theta < p\theta \le T$, and the series $\sum_{j\geq 2} (j-1)^{-3/2}$ converges, we obtain (4.11) $$|E_{\theta}| \le R_{11} \sqrt{\theta}$$. This proves the lemma. #### 5. The error estimate: The purpose of this section is to give an estimate of the speed of convergence of the approximate interface $s_{\theta}(t)$ to the true interface s(t). In view of Lemma 4.1 and (4.1) this will also complete the proof of the theorem. <u>Lemma 5.1</u>: There exists a constant C depending upon H, b, G_1 , G_2 , T such that $\|\mathbf{s}_{\theta} - \mathbf{s}\|_{\mathbf{m}} \leq c/\overline{\theta} .$ Proof: Subtract (4.6) from (4.2) and use (4.11) to obtain $$|s(t) - \bar{s}_{\theta}(t)| \le \int_{0}^{t} |g(u(0,\tau),\tau) - g(u_{\theta}(0,\tau),\tau)| d\tau + \int_{0}^{s(t)} u(x,t) dx - \int_{0}^{s_{\theta}(t)} \bar{u}_{\theta}(x,t) dx| + \int_{0}^{s_{\theta}(t)} \bar{u}_{\theta}(x,t) dx - \int_{0}^{x_{p}} u_{\theta}(x,t) dx| + K_{11}\sqrt{\theta},$$ where \vec{u}_A is the unique solution of the problem $$\begin{split} & L\bar{u}_{\theta} = 0 \quad \text{in} \quad \mathcal{D}_{\overline{s}_{\theta}} \equiv \left\{0 < x < \overline{s}_{\theta}(t)\right\} \times \left\{0, T\right] \;, \\ & \bar{u}_{\theta x}(0, t) = g(u_{\theta}(0, t), t) \;, \qquad 0 < t \leq T \;, \\ & \bar{u}_{\theta}(x, 0) = h(x) \;, \qquad x \in \left\{0, b\right\} \;, \\ & \bar{u}_{\theta}(\overline{s}_{\theta}(t), t) = 0 \;, \qquad 0 < t \leq T \;. \end{split}$$ On the basis of the maximum principle and standard barriers estimates [10,7], as in Lemma 3.3, we have $$\begin{array}{lll} 0 \leq u(x,t) \leq C_{1}(s(t)-x), & (x,t) \in D_{T}, \\ \\ 0 \leq \bar{u}_{\theta}(x,t) \leq C_{1}(\bar{s}_{\theta}(t)-x), & (x,t) \in \mathcal{D}_{\overline{s}_{\theta}}. \end{array}$$ <u>Proposition 5.1:</u> There exist constants B_1 and B_2 depending upon H, D, G_1 , G_2 , T, such that $$|\int_{0}^{\mathbf{s}(t)} u(x,t) dx - \int_{0}^{\mathbf{s}_{\theta}(t)} \overline{u_{\theta}(x,t)} dx| \leq B_{\eta} \int_{0}^{t} \frac{\sup_{0 \leq \rho \leq \tau} |\mathbf{s}(\rho) - \overline{s_{\theta}}(\rho)|}{\sqrt{t - \tau}} d\tau + B_{2} \int_{0}^{t} \frac{\delta \delta I_{\tau}}{\sqrt{t - \tau}} d\tau.$$ ### Proof of Proposition 5.1: Set $$\vec{\alpha}(t) = \min\{s(t), \vec{s}_{\theta}(t)\}, \ \vec{\beta}(t) = \max\{s(t), \vec{s}_{\theta}(t)\},$$ $$\vec{\delta}(t) = \vec{\beta}(t) - \vec{\alpha}(t), \qquad t \in [0,T].$$ Obviously $\vec{\alpha}(\cdot)$, $\vec{\beta}(\cdot)$ are non-decreasing Lipschitz continuous functions with Lipschitz constant bounded by C_1 . Then $$|\int_{0}^{\mathbf{g}(t)} \mathbf{u}(\mathbf{x},t) d\mathbf{x} - \int_{0}^{\mathbf{g}(t)} \mathbf{u}_{\theta}(\mathbf{x},t) d\mathbf{x}| \le \int_{0}^{\mathbf{g}(t)} |\mathbf{u}(\mathbf{x},t) - \mathbf{u}_{\theta}(\mathbf{x},t)| d\mathbf{x} + \int_{\mathbf{g}(t)}^{\mathbf{g}(t)} |\mathbf{y}(\mathbf{x},t)| d\mathbf{x} = \mathbf{I}_{1} + \mathbf{I}_{2}$$ where $$y(x,t) = \begin{cases} u(x,t) & \text{if } \bar{a}(t) = \bar{s}_{\theta}(t) \\ \bar{u}_{\theta}(x,t) & \text{if } \bar{a}(t) = s(t) \end{cases},$$ We dominate the integrand in I_1 by the sum $|v - \bar{u}_0| + |u - v|$ where v is defined in Lemma 3.3 and v_1 , v_2 are the solutions of the problems $$\{P_{V_1}\} \begin{cases} L_{V_1} = 0, & \{0 < x < \tilde{\alpha}(t)\} \times \{0 < t \le T\}, \\ v_{1x}(0,t) = 0, & 0 < t \le T, \\ v_{1}(x,0) = 0, & 0 < x \le b, \\ v_{1}(\tilde{\alpha}(t),t) = c_{1}\tilde{\delta}(t), & 0 \le t \le T \end{cases}$$ and $$\begin{cases} Lv_2 = 0, & (0, m) \times (0, T), \\ v_{2x}(0, t) = -|g(u(0, t), t) - g(u_{\theta}(0, t), t)|, & 0 < t \le T, \\ v_{2}(x, 0) = 0, & x \in [0, m). \end{cases}$$ As for v_2 , it can be represented explicitly [9], by $$v_2(x,t) = \int_0^t N(x,t,0,\tau) |g(u(0,\tau),\tau) - g(u_{\theta}(0,\tau),\tau)| d\tau .$$ Therefore by virtue of the Lipschitz continuity of g(*,t) and (4.1) we obtain $$v_2(x,t) \le \frac{G_1}{\sqrt{\pi}} c_2 \int_0^t \frac{1\delta I_{\tau}}{\sqrt{t-\tau}} d\tau$$. By an argument of [2] page 87, v_{\uparrow} can be dominated by z(x,t)+z(-x,t) where z solves $$\{ P_{z}, \{ -\overline{\alpha}(t) < x < \infty \} \times \{ 0 < t \leq T \},$$ $$z(-\overline{\alpha}(t),t) = C_{1}^{\overline{\delta}}(t), \quad 0 < t \leq T,$$ $$z(x,0) = 0, \quad -b \leq x < \infty.$$ Then there exists a constant K₁₂ depending only upon the data such that $$z(x,t) \le \kappa_{12} \int_0^t \|\delta\|_{\tau} \|\Gamma_{x}(x,t) - \tilde{\alpha}(\tau),\tau)\|d\tau$$. Therefore $$\int\limits_{0}^{\overline{\alpha}(t)} v_{1}(x,t) dx \leqslant \int\limits_{-\overline{\alpha}(t)}^{\overline{\alpha}(t)} z(x,t) dx \leqslant \int\limits_{-\overline{\alpha}(t)}^{\infty} z(x,t) dx \leqslant K_{13} \int\limits_{0}^{t} \frac{1\overline{\delta}t}{\sqrt{t-\tau}} d\tau \ .$$ The estimate of I_2 is done by exploiting again the methods of [2] page 87 and dominating the integrand by $\tilde{z}(x,t)$, the solution of $$\begin{cases} \tilde{Lz} = 0, & \{\tilde{\alpha}(t) < x < \infty\} \times \{0 < t \le T\}, \\ \tilde{z}(x,0) = 0, & b \le x < \infty, \\ \tilde{z}(\alpha(t),t) = C_1 \delta(t), & 0 < t \le T. \end{cases}$$ It gives $$I_2 \leq K_{14} \int_0^t \frac{i\delta I_{\tau}}{\sqrt{t-\tau}} d\tau .$$ Proposition 5.2: There exist a constant \tilde{B} depending upon H, b, G_1 , G_2 , T such that $$\tilde{s}_{\theta}(t) \qquad x_{p}$$ $$\iint_{0} \tilde{u}_{\theta}(x,t) dx - \int_{0}^{p} u_{\theta}(x,t) dx | \leq \tilde{B}\theta .$$ <u>Proof of Proposition 5.2</u>: For t > 0 fixed we have $\bar{s}_{\theta}(t) > x_0$. Then $$\begin{split} & \bar{s}_{\theta}(t) & \bar{u}_{\theta}(x,t) dx - \int_{0}^{x_{p}} u_{\theta}(x,t) dx | \leq \int_{0}^{x_{p}} |\bar{u}_{\theta}(x,t) - u_{\theta}(x,t)| dx + \\ & \bar{s}_{\theta}(t) \\ & + \int_{x_{p}} \bar{u}_{\theta}(x,t) dx = J_{1} + J_{2} . \end{split}$$ Standard barrier arguments [7,8,9] give $$\sup_{(x,t)\in \mathbb{D}_{s_{\theta}}^{-}} |\widetilde{u}_{\theta}(x,t)| \leq c_{1}(b+c_{1}T) .$$ On the other hand by the construction of $\tilde{s}_{\theta}(\cdot)$, the distance $\tilde{s}_{\theta}(t) - x_{p}$ is at most $C_{1}\theta$. Hence $$J_2 \leq \kappa_{15}^{\theta}$$. To estimate the integrand in J_1 we proceed as in Lemma 4.1. In fact, in the present situation the estimates are simpler since $\bar{u}_{\theta} - u_{\theta}$ has zero flux at the fixed face x = 0. We obtain the estimate analogous to (4.1) $$|\bar{u}_{\theta}(x,t) - u_{\theta}(x,t)| \leq \kappa_{16} \sup_{0 \leq \tau \leq t} |\bar{s}_{\theta}(\tau) - s_{\theta}(\tau)|.$$ As remarked above for all te [0,T] we have $$\bar{s}_{\theta}(t) - s_{\theta}(t) \leq c_1 \theta$$, and hence the proposition is proved. We now conclude the proof of Lemma 5.1. Notice that by virtue of the Lipschitz continuity of $g(\cdot,t)$ and (4.1) we have $$\int_{0}^{t} |g(u(0,\tau),\tau) - g(u_{\theta}(0,\tau),\tau)| d\tau \leq G_{1} \tau^{\frac{1}{2}} \int_{0}^{t} \frac{|u(0,\tau) - u_{\theta}(0,\tau)|}{\sqrt{t-\tau}} d\tau$$ $$\leq G_{1} \tau^{\frac{1}{2}} C_{2} \int_{0}^{t} \frac{|\delta|t}{\sqrt{t-\tau}} d\tau .$$ Putting together the various estimates so obtained we see that for all $0 < t \le T$ we have $$|s(t) - \bar{s}_{\theta}(t)| \le \kappa_{18} \sqrt{\theta} + \kappa_{19} \int_{0}^{t} \frac{\|\bar{\delta}\|_{\tau}}{\sqrt{t - \tau}} d\tau + \kappa_{17} \int_{0}^{t} \frac{\|\bar{\delta}\|_{\tau}}{\sqrt{t - \tau}} d\tau \ .$$ Now $$|s(t)-\tilde{s}_{\theta}(t)|\geq |s(t)-s_{\theta}(t)|-|s_{\theta}(t)-\tilde{s}_{\theta}(t)|$$ and $$\|\tilde{\delta}\|_{\tau} = \sup_{0 \le \rho \le \tau} |s(\rho) - \tilde{s}_{\theta}(\rho)| \le \|\delta\|_{\tau} + \sup_{0 \le \rho \le \tau} |s_{\theta}(\rho) - \tilde{s}_{\theta}(\rho)| \le \|\delta\|_{\tau} + c_{1}\theta.$$ Consequently the above implies $$161_{t} \le K_{20} \sqrt{\theta} + K_{21} \int_{0}^{t} \frac{161_{\tau}}{\sqrt{t-1}} d\tau$$. The proof of the lemma is concluded with an application of Gronwall's inequality. ## 6. Modifications of the scheme: Consider the sequence of approximating problem (P_j) introduced in Section 2. The theorem remains true if we modify the flux condition on the fixed face x = 0 in (P_j) as follows (6.i) Retarded flux. We set $u_x^1(0,t) = g(h(0),t)$, $0 < t \le \theta$ and for j > 1 we replace the flux condition in (P_i) with $$u_{\mathbf{x}}^{\mathbf{j}}(0,t) = g(u^{\mathbf{j}-1}(0,t-\theta),t), \quad (\mathbf{j}-1)\theta < t \leq \mathbf{j}\theta$$. (6.ii) Piecewise constant flux. The modification consists in freezing the flux on x = 0 in the j^{th} rectangle at its value at the lower left corner. Set $u_X^1(0,t) = g(h(0),0), 0 < t < \theta$ and then for j > 1 $u_{\mathbf{x}}^{j}(0,t) = g(u^{j-1}(0,(j-1)\theta),(j-1)\theta), \quad (j-1)\theta < t \le j\theta$. The proof of the convergence and the error estimate for the scheme obtained with the above modifications, is carried out in essentially the same way as indicated in the previous sections. Some minor modifications are needed which we leave to the reader, (cf. [1]). #### REFERENCES - [1] G. Borgioli, E. DiBenedetto, M. Ughi, Stefan problems with nonlinear boundary conditions: The polygonal method. Zeitschrift Angew. Math. Mech. 58 (1978), 539-46. - [2] J. R. Cannon, J. Douglas, The stability of the boundary in a Stefan problem. Ann. Scuola Norm. Sup. Pisa 21 (1967), 83-91. - [3] J. R. Cannon, C. D. Hill, Existence, uniqueness, stability and monotone dependence in a Stefan problem for the heat equation. J. Math. Mech. <u>17</u> (1967), 1-20. - [4] J. R. Cannon, The heat equation and its applications, Addison Wesley (1981). - [5] A. Datzeff, Sur le problème linéaire de Stefan, Annuaire Univ. Sofia Fac. Sci. 45 (1949), 321-52. - [6] A. Datzeff, Sur le probleme linéaire de Stefan, Memoire de Sciences Physiques Fasc. 69, Gauthiers Villars, Paris (1970). - [7] A. Fasano, M. Primicerio, Il problema di Stefan con condizioni al contorno nonlineari. Ann. Scuola Norm. Sup. Pisa 26 (1972), 711-737. - [8] A. Fasano, M. Primicerio, Su un problema unidimensionale di diffusione in un mezzo a contorno mobile con condizioni ai limiti non lineari. Ann. Mat. Pura Appl. IV ser. 93 (1972), 333-357. - [9] A. Fasano, M. Primicerio, La diffusione del calore in uno strato di spessore variabile in presenza di scambi termici con l'ambiente: Deduzione di limitazioni a priori sulla temperatura e le sue derivate. Rend. Sem. Mat. Univ. Padova <u>50</u> (1973), 269-330. - [10] A. Fasano, M. Primicerio, Convergence of Hüber's method for heat conduction problems with change of phase. Zeit. Angew. Math. Mech. <u>53</u> (1973), 341-48. - [11] A. Fasano, M. Primicerio, F. Fontanella, An efficient method for solving free-boundary diffusion problems. Meccanica 8(1973), 223-235. - [12] A. Friedman, <u>Partial differential equations of parabolic type</u>. Prentice Hall, Inc. 1964. - [13] M. Primicerio, Problemi di diffusione a frontiera libera. Boll. Un. Mat. Ital. (5), 18-A (1981), 11-68. - [14] J. C. W. Rogers, A. E. Berger, N. Ciment, The alternating phase truncation method for numerical solutions of a Stefan problem. SIAM J. Numerical Analysis Vol. 16 #4, August 1979. - [15] A. Hüber, Hauptaufsätze über das Fortschreiten der Schmelzgrenze in einem linearen Leiter. Zeitschrift Angew. Math. Mech. 19 (1939), 1-21. ED:RS:scr | I / w// / the vit bycoment. | ・グSK-/ REPORT DOCUMENTATION PAGE | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------| | T. REPORT NUMBER | 2. GOVT ACCESSION | BEFORE COMPLETING FO NO. 3. RECIPIENT'S CATALOG NUMBER | | 2249 | 12 1/12 | 20 M(3) 11 | | | כשבחישו | TYPE OF REPORT & PENIOD CO | | 4. TITLE (and Subtitle) | and the second second second second | Summary Report - no spe | | AN ALGORITHM FOR THE QNE-PHA | SE STEFAN PROBLEM . \ | reporting period | | 4 4 | | 6. PERFORMING ORG. REPORT NUM | | · . | | | | 7. AUTHOR(a) | | 8. CONTRACT OR GRANT NUMBER | | E. biBenedetto and R. Spigler/ | | DAAG29-80-C-0041 | | the state of s | Ţ | DANGE / - UB-C-C-C | | 9. PERFORMING ORGANIZATION NAME AND | | 10. PROGRAM ELEMENT, PROJECT,
AREA & WORK UNIT NUMBERS | | Mathematics Research Center, University of | | Work Unit Number - 1 | | 610 Walnut Street | Wisconsin | n (Applied Analysis) | | Madison, Wisconsin 53706 | | | | 11. CONTROLLING OFFICE NAME AND ADDRI
U.S. Army Research Office | ESS / | 12 ASPORT DATE | | P.O. Box 12211 | (/ | July 281 | | Research Triangle Park, North | | 27 | | 14. MONITORING TOENCY NAME & ADDRESS | | e) 15. SECURITY CLASS. (of this report) | | (13/21) | 1 | UNCLASSIFIED | | | / | · · · · · · · · · · · · · · · · · · · | | | , | 150. DECLASSIFICATION/DOWNGRAM | | | | | | 17. DISTRIBUTION STATEMENT (of the abetrac | t entered in Block 20, if different | from Report) | | | | | | | | · | | | | | | 18. SUPPLEMENTARY NOTES | | | | | | | | | | • | | | | | | 19. KEY WORDS (Continue on reverse side if nec | essary and identify by block numi | ber) | | | * | | | | free boundary | | | Stefan problem Approximation of the interface | | | | | | | | | | | | Approximation of the interface 20. ABSTRACT (Continue on reverse side II necessity) | | | | Approximation of the interface 20. ABSTRACT (Continue on reverse side II necessity) | for solving one-dime | ensional free boundary probl | DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED J JL JC SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)